martes, 20 de marzo de 2012

LEYES Y PROCESOS TERMODINAMICOS

Integrantes de equipo:
Diana del Carmen Hernandez Garcia
Liliana Chapan Tome
Ana Maria Ocelot Dominguez
Nery Uriel Ransauro Yobal



Primera ley de la termodinamica- Ley de la conservacion de la energia.


También conocida como principio de conservación de la energía para la termodinámica «en realidad el primer principio dice más que una ley de conservación», establece que si se realiza trabajo sobre un sistema o bien éste intercambia calor con otro, la energía interna del sistema cambiará. Visto de otra forma, esta ley permite definir el calor como la energía necesaria que debe intercambiar el sistema para compensar las diferencias entre trabajo y energía interna. Fue propuesta por Nicolas Léonard Sadi Carnot en 1824, en su obra Reflexiones sobre la potencia motriz del fuego y sobre las máquinas adecuadas para desarrollar esta potencia, en la que expuso los dos primeros principios de la termodinámica. Esta obra fue incomprendida por los científicos de su época, y más tarde fue utilizada por Rudolf Loreto Clausius y Lord Kelvin para formular, de una manera matemática, las bases de la termodinámica.
La ecuación general de la conservación de la energía es la siguiente:

Que aplicada a la termodinámica teniendo en cuenta el criterio de signos termodinámico, queda de la forma:

Donde U es la energía interna del sistema (aislado), Q es la cantidad de calor aportado al sistema y W es el trabajo realizado por el sistema.
Esta última expresión es igual de frecuente encontrarla en la forma ∆U = Q + W. Ambas expresiones, aparentemente contradictorias, son correctas y su diferencia está en que se aplique el convenio de signos IUPAC o el Tradicional.



Proceso isotérmico

Se denomina proceso isotérmico o proceso isotermo al cambio reversible en un sistema termodinámico, siendo dicho cambio a temperatura constante en todo el sistema. La compresión o expansión de un gas ideal en contacto permanente con un termostato es un ejemplo de proceso isotermo, y puede llevarse a cabo colocando el gas en contacto térmico con otro sistema de capacidad calorífica muy grande y a la misma temperatura que el gas; este otro sistema se conoce como foco caliente. De esta manera, el calor se transfiere muy lentamente, permitiendo que el gas se expanda realizando trabajo. Como la energía interna de un gas ideal sólo depende de la temperatura y ésta permanece constante en la expansión isoterma, el calor tomado del foco es igual al trabajo realizado por el gas: Q = W.
Una curva isoterma es una línea que sobre un diagrama representa los valores sucesivos de las diversas variables de un sistema en un proceso isotermo. Las isotermas de un gas ideal en un diagrama P-V, llamado diagrama de Clapeyron, son hipérbolas equiláteras, cuya ecuación es P•V = constante.


Proceso isobárico
Un proceso isobárico es un proceso termodinámico que ocurre a presión constante. La Primera Ley de la Termodinámica
En un diagrama P-V, un proceso isobárico aparece como una línea horizontal.


Un ejemplo de un proceso isobárico es la ebullición del agua en un recipiente abierto. Como el contenedor está abierto, el proceso se efectúa a presión atmosférica constante. En el punto de ebullición, la temperatura del agua no aumenta con la adición de calor, en lugar de esto, hay un cambio de fase de agua a vapor. 

Proceso isocórico

Es un proceso a volumen constante, en consecuencia.
W = 0, y tendremos:


En un recipiente de paredes gruesas que contiene un gas determinado, al que se le suministra calor, observamos que la temperatura y presión interna se elevan, pero el volumen se mantiene igual.
En un proceso que se efectúa a volumen constante sin que haya ningún desplazamiento, el trabajo hecho por el sistema es cero.
Es decir, en un proceso isocórico no hay trabajo realizando por el sistema. Y no se adiciona calor al sistema que ocasione un incremento de su energía interna.

PROCESO ADIABÁTICO


En termodinámica se designa como proceso adiabático a aquél en el cual el sistema (generalmente, un fluido que realiza un trabajo) no intercambia calor con su entorno. Un proceso adiabático que es además reversible se conoce como proceso isentrópico. El extremo opuesto, en el que tiene lugar la máxima transferencia de calor, causando que la temperatura permanezca constante, se denomina como proceso isotérmico.
El término adiabático hace referencia a elementos que impiden la transferencia de calor con el entorno. Una pared aislada se aproxima bastante a un límite adiabático. Otro ejemplo es la temperatura adiabática de llama, que es la temperatura que podría alcanzar una llama si no hubiera pérdida de calor hacia el entorno. En climatización los procesos de humectación (aporte de vapor de agua) son adiabáticos, puesto que no hay transferencia de calor, a pesar que se consiga variar la temperatura del aire y su humedad relativa.
El calentamiento y enfriamiento adiabático son procesos que comúnmente ocurren debido al cambio en la presión de un gas. Esto puede ser cuantificado usando la ley de los gases ideales.



PROCESO DIATÉRMICO

Un proceso diatérmico quiere decir que deja pasar el calor fácilmente.
·         Una interacción térmica es cualquier otro tipo de intercambio de energía. En este caso la pared se denomina diatérmica.
·         Diatérmico también puede entenderse por isotérmico , significa que no hay cambio de temperatura debido a una pared diatérmica que aísla el sistema del medio ambiente
·         En cuanto diatérmicos se refieren a que el sistema tiene un intercambio de energía con los alrededores, un ejemplo, nosotros, los seres humanos, somos sistemas diatérmicos, ya que estamos intercambiando energía con nuestro ambiente
·         Una pared diatérmica es aquella que permite la transferencia de energía térmica (calor) pero, sin que haya transferencia de masa. El opuesto es una pared adiabática que es la que impide la transferencia de energía en forma de calor. 
·         Cualquier superficie real es una superficie diatérmica, por ejemplo, un vaso, los    muros de una casa, etc., todos en mayor o menor grado permiten la transferencia de calor.






Segunda ley de la termodinámica.
El segundo principio de la termodinámica o segunda ley de la termodinámica,1 expresa que:
La cantidad de entropía del universo tiende a incrementarse en el tiempo.
Es una de las leyes más importantes de la física; aún pudiéndose formular de muchas maneras todas llevan a la explicación del concepto de irreversibilidad y al de entropía. Este último concepto, cuando es tratado por otras ramas de la física, sobre todo por la mecánica estadística y la teoría de la información, queda ligado al grado de desorden de la materia y la energía de un sistema. La termodinámica, por su parte, no ofrece una explicación física de la entropía, que queda asociada a la cantidad de energía no utilizable de un sistema. Sin embargo, esta interpretación meramente fenomenológica de la entropía es totalmente consistente con sus interpretaciones estadísticas. Así, tendrá más entropía el agua en estado gaseoso con sus moleculas dispersas y alejadas unas de las otras que la misma en estado líquido con sus moléculas más juntas y más ordenadas.
El segundo principio de la termodinámica dictamina que si bien la materia y la energía no se pueden crear ni destruir, sí que se transforman, y establece el sentido en el que se produce dicha transformación. Sin embargo, el punto capital del segundo principio es que, como ocurre con toda la teoría termodinámica, se refiere única y exclusivamente a estados de equilibrio.
Toda definición, corolario o concepto que de él se extraiga sólo podrá aplicarse a estados de equilibrio, por lo que, formalmente, parámetros tales como la temperatura o la propia entropíaquedarán definidos únicamente para estados de equilibrio. Así, según el segundo principio, cuando se tiene un sistema que pasa de un estado de equilibrio A a otro B, la cantidad de entropía en el estado de equilibrio B será la máxima posible, e inevitablemente mayor a la del estado de equilibrio A. Evidentemente, el sistema sólo hará trabajo cuando esté en el tránsito del estado de equilibrio A al B y no cuando se encuentre en uno de estos estados. Sin embargo, si el sistema era cerrado, su energía y cantidad de materia no han podido variar; si la entropía debe de maximizarse en cada transición de un estado de equilibrio a otro, y el desorden interno del sistema debe aumentar, se ve claramente un límite natural: cada vez costará más extraer la misma cantidad de trabajo, pues según la mecánica estadística el desorden equivalente debe aumentar exponencialmente.
Aplicado este concepto a un fenómeno de la naturaleza como por ejemplo la vida de las estrellas, las mismas, al convertir el hidrógeno, su combustible principal, en helio generan luz y calor. Al fusionar los núcleos de hidrógeno en su interior la estrella libera la energía suficiente para producirlos a esa intensidad; sin embargo, cuando intenta fusionar los núcleos de Helio no consigue liberar la misma cantidad de energía que obtenía cuando fusionaba los núcleos de hidrógeno. Cada vez que la estrella fusiona los núcleos de un elemento obtiene otro que le es más inútil para obtener energía y por ende la estrella muere, y en ese orden de ideas la materia que deja atrás ya no servirá para generar otra estrella. Es así como el segundo principio de la termodinámica se ha utilizado para explicar el fin del universo.

¿PORQUE SI LA TECNOLOGÍA ESTA TAN ADELANTADA NO ES POSIBLE CONSTRUIR UNA MAQUINA TÉRMICA QUE SEA CAPAZ DE TRANSFORMAR TODO EL CALOR QUE SE LE SUMINISTRA EN TRABAJO MECÁNICO?
Es imposible construir una 
máquina térmica que funcionando cíclicamente transforme íntegramente en trabajo el calor 
que recibe de una fuente térmica.  
El móvil perpetuo de segunda especie no contradice al Primer Principio de la Termodinámica, pero es 
inviable merced al Segundo Principio. De haber sido  posible, sus consecuencias hubiesen sido altamente 
ventajosas. Así, extrayendo calor del agua del mar y convirtiéndolo en trabajo, los buques navegarían sin 
consumir otro tipo de energía, la cual sería devuelta de nuevo al mar por rozamiento.

No hay comentarios:

Publicar un comentario